A rescue out at sea with the Electro-Optical System
Loïc is eating dinner with fellow crew members on call when his cell phone starts ringing. He jumps up as soon as he hears the special ring tone he chose for calls from his helicopter squadron 33F.

"It’s another one," he mutters, not particularly surprised, given the number of distress calls they get. But since the emergency call, they have lost radio contact! The mast falling could have caused a leak, and the ship risks sinking. The crew’s immediate priority is to quickly find the boat and its occupant in a vast, cold and constantly changing sea.

The waves in this sector are nearly three meters high, and the sailboat is only seven meters long. Loïc quickly asks for details about the color of the boat and the sea and wind conditions. With a Force 5 wind, it’s not going to be easy!

"That's good news," he replies, relieved. "If the mast had fallen, it’s likely the ship would have sunk too. But the crew could still be on board and in need of rescue."

Today, it’s a real emergency: they need to rescue a ship in distress. Furthermore, not only is the sailor’s radio not answering, but no distress beacon has been activated.

Loïc is part of the French navy’s air-sea search & rescue (SAR) team. More specifically, he’s the sensor operator, an electronics specialist in charge of the sensors on aircraft deployed by the French navy. They’re flying a latest-generation helicopter, the NH90 Caïman Marine model. Deployed by the French navy, the Caïman Marine not only performs combat missions, it also assumes a wide variety of other missions, from commando transport, special operations, mixed-wing airlift and SAR.

The waves in this sector are nearly three meters high, and the sailboat is only seven meters long. Loïc quickly asks for details about the color of the boat and the sea and wind conditions. With a Force 5 wind, it’s not going to be easy!

"That’s good news," he replies, relieved. "If the mast had fallen, it’s likely the ship would have sunk too. But the crew could still be on board and in need of rescue."

A distress call

A quick, effective rescue

High-tech surveillance

Alive!

© Gilaxia / Istockphoto

A distress call

A quick, effective rescue

High-tech surveillance

Alive!

© Gilaxia / Istockphoto

Loïc used the hot spot detection function in the system, enabling him to detect a human form. But he has to make sure that it’s the guy they’re looking for. So he activates the continuous zoom function in the electro-optical system, a line-of-sight that amplifies the infrared signal coming from the target. It’s the system that automatically calculates the flight path needed to scan an entire sector. The operator mainly uses his infrared sensor to detect the movements at sea or on the ground, under any weather conditions. For example, it can detect a shipwreck survivor at a range of 30 kilometers.

© Pilesasmiles / Istockphoto

Loïc is eating dinner with fellow crew members on call when his cell phone starts ringing. He jumps up as soon as he hears the special ring tone he chose for calls from his helicopter squadron 33F.

"It’s another one," he mutters, not particularly surprised, given the number of distress calls they get. But since the emergency call, they have lost radio contact! The mast falling could have caused a leak, and the ship risks sinking. The crew’s immediate priority is to quickly find the boat and its occupant in a vast, cold and constantly changing sea.

The waves in this sector are nearly three meters high, and the sailboat is only seven meters long. Loïc quickly asks for details about the color of the boat and the sea and wind conditions. With a Force 5 wind, it’s not going to be easy!

"That’s good news," he replies, relieved. "If the mast had fallen, it’s likely the ship would have sunk too. But the crew could still be on board and in need of rescue."

"That’s good news," he replies, relieved. "If the mast had fallen, it’s likely the ship would have sunk too. But the crew could still be on board and in need of rescue."

A quick, effective rescue

High-tech surveillance

Alive!

© Gilaxia / Istockphoto

Loïc used the hot spot detection function in the system, enabling him to detect a human form. But he has to make sure that it’s the guy they’re looking for. So he activates the continuous zoom function in the electro-optical system, a line-of-sight that amplifies the infrared signal coming from the target. It’s the system that automatically calculates the flight path needed to scan an entire sector. The operator mainly uses his infrared sensor to detect the movements at sea or on the ground, under any weather conditions. For example, it can detect a shipwreck survivor at a range of 30 kilometers.

© Pilesasmiles / Istockphoto

Loïc is eating dinner with fellow crew members on call when his cell phone starts ringing. He jumps up as soon as he hears the special ring tone he chose for calls from his helicopter squadron 33F.

"It’s another one," he mutters, not particularly surprised, given the number of distress calls they get. But since the emergency call, they have lost radio contact! The mast falling could have caused a leak, and the ship risks sinking. The crew’s immediate priority is to quickly find the boat and its occupant in a vast, cold and constantly changing sea.

The waves in this sector are nearly three meters high, and the sailboat is only seven meters long. Loïc quickly asks for details about the color of the boat and the sea and wind conditions. With a Force 5 wind, it’s not going to be easy!

"That’s good news," he replies, relieved. "If the mast had fallen, it’s likely the ship would have sunk too. But the crew could still be on board and in need of rescue."

"That’s good news," he replies, relieved. "If the mast had fallen, it’s likely the ship would have sunk too. But the crew could still be on board and in need of rescue."

A quick, effective rescue

High-tech surveillance

Alive!

© Gilaxia / Istockphoto

Loïc used the hot spot detection function in the system, enabling him to detect a human form. But he has to make sure that it’s the guy they’re looking for. So he activates the continuous zoom function in the electro-optical system, a line-of-sight that amplifies the infrared signal coming from the target. It’s the system that automatically calculates the flight path needed to scan an entire sector. The operator mainly uses his infrared sensor to detect the movements at sea or on the ground, under any weather conditions. For example, it can detect a shipwreck survivor at a range of 30 kilometers.