Safran à l’ère des satellites électriques

Développé dans le cadre du programme « Nouvelle France Industrielle », le propulseur PPS®5000 de Snecma (Safran) est destiné à équiper les futures générations de satellites à propulsion « tout électrique ». Thales Alenia Space France et Airbus Defense & Space l’ont déjà retenu pour leurs plates-formes de satellites de nouvelle génération.

Petite révolution dans le secteur spatial : début 2013, le groupe d'aéronautique Boeing recevait pour la première fois une commande de satellites à propulsion électrique. Ces derniers utilisent uniquement de l'énergie électrique pour assurer leur mise en orbite puis leur maintien en position géostationnaire, contrairement aux satellites « classiques » à propulsion chimique. « Suite à cette commande, tous les maîtres d'oeuvre se sont attelés à la conception de ce nouveau type de satellites, se souvient Nicolas de Chanaud, responsable adjoint chez Snecma du Programme propulsion plasmique. Parmi eux, Thales Alenia Space France et Airbus Defence and Space, dont nous étions déjà fournisseur en propulsion plasmique. » Cette collaboration a été renforcée par la signature, en mars et mai 2014, de deux accords de coopération faisant du propulseur plasmique PPS®5000 de Snecma le moteur de référence de leurs plates-formes de satellites « tout électrique » de nouvelle génération, baptisées respectivement Spacebus et Eurostar. « Nous bénéficions également d'un fort soutien du CNES* et de l'ESA** pour le développement de ce propulseur », précise Nicolas de Chanaud.

Faible poussée et hautes performances
Les propulseurs électriques utilisent l'énergie produite par les panneaux solaires du satellite pour éjecter un gaz, en général du xénon, produisant ainsi la poussée. « A charge utile égale, l'utilisation de la propulsion électrique permet de réduire de 40 % la masse d'un satellite de télécommunications, explique Nicolas de Chanaud. En effet, quelques kilogrammes de gaz suffisent pour propulser un satellite, alors qu'un moteur chimique nécessite plusieurs tonnes de carburant. Les opérateurs qui choisissent ce type de propulsion vont donc pouvoir utiliser un lanceur moins puissant et donc moins cher. Dans le contexte économique actuel, réduire les coûts de lancement est devenu un critère déterminant pour certains clients. »

La puissance électrique disponible à bord étant limitée, ces propulseurs génèrent une poussée globale faible. Dans ces conditions, il faut compter trois à six mois pour atteindre l'orbite géostationnaire, contre une dizaine de jours avec la propulsion chimique, plus puissante mais très consommatrice de carburant. « La solution électrique répond toutefois aux besoins des opérateurs qui gèrent plusieurs satellites en orbite et peuvent ainsi prévoir longtemps à l'avance leur remplacement », estime Nicolas de Chanaud. Cette technologie s'adapte aussi bien à l'exploration spatiale. Le premier propulseur plasmique de Snecma, le PPS®1350, a assuré la propulsion principale de la sonde lunaire ESA SMART-1, lancée en 2003 avec seulement 80 kg de gaz xénon. Sa mission s'est achevée en 2006 après avoir fonctionné près de 5 000 heures !

Une large gamme de puissance
« Il existe différents types de propulseurs électriques, rappelle Nicolas de Chanaud. Chez Snecma, nous avons choisi la propulsion plasmique, avec l'ambition de devenir le leader de la propulsion électrique des satellites. » (Voir encadré). Actuellement en cours de développement, les futurs propulseurs plasmiques de Snecma couvriront une large gamme de puissance, allant de 500 W à 20 kW. « Outre les propulseurs, nous disposons d'une expertise système, incluant la gestion et la distribution de la puissance électrique à bord, ainsi que la gestion du gaz. Cela nous permet de proposer des solutions modulaires à nos clients. »

Le fonctionnement de la propulsion plasmique

Les propulseurs plasmiques de Snecma utilisent du xénon. Ce gaz est injecté dans un canal de décharge où il est bombardé d'électrons, afin que ses atomes se chargent positivement. Utilisant les mêmes principes de physique qui font que deux aimants opposés se repoussent, les ions positifs de xénon placés dans un champ électrique vont alors être éjectés du propulseur à très haute vitesse (environ 20 km/s), produisant ainsi la poussée.

* CNES : Centre National d'Etudes Spatiales
** ESA : European Space Agency